- Categories
- Cylinder
- Enhanced Cylinder Models for SasView
- core_shell_cylinder_high_res.c
Enhanced Cylinder Models for SasView - core_shell_cylinder_high_res.c
// vd = volume * delta_rho
// besarg = q * R * sin(theta)
// siarg = q * L/2 * cos(theta)
static double _cyl(double vd, double besarg, double siarg)
{
return vd * sas_sinx_x(siarg) * sas_2J1x_x(besarg);
}
static double
form_volume(double radius, double thickness, double length)
{
return M_PI*square(radius+thickness)*(length+2.0*thickness);
}
static double
radius_from_excluded_volume(double radius, double thickness, double length)
{
const double radius_tot = radius + thickness;
const double length_tot = length + 2.0*thickness;
return 0.5*cbrt(0.75*radius_tot*(2.0*radius_tot*length_tot + (radius_tot + length_tot)*(M_PI*radius_tot + length_tot)));
}
static double
radius_from_volume(double radius, double thickness, double length)
{
const double volume_outer_cyl = form_volume(radius,thickness,length);
return cbrt(volume_outer_cyl/M_4PI_3);
}
static double
radius_from_diagonal(double radius, double thickness, double length)
{
const double radius_outer = radius + thickness;
const double length_outer = length + 2.0*thickness;
return sqrt(radius_outer*radius_outer + 0.25*length_outer*length_outer);
}
static double
radius_effective(int mode, double radius, double thickness, double length)
{
switch (mode) {
default:
case 1: //cylinder excluded volume
return radius_from_excluded_volume(radius, thickness, length);
case 2: // equivalent volume sphere
return radius_from_volume(radius, thickness, length);
case 3: // outer radius
return radius + thickness;
case 4: // half outer length
return 0.5*length + thickness;
case 5: // half min outer length
return (radius < 0.5*length ? radius + thickness : 0.5*length + thickness);
case 6: // half max outer length
return (radius > 0.5*length ? radius + thickness : 0.5*length + thickness);
case 7: // half outer diagonal
return radius_from_diagonal(radius,thickness,length);
}
}
static void
integrand_core_shell_cylinder(const double x, const double q, const double core_r, const double core_h, const double core_vd, const double shell_r, const double shell_h, const double shell_vd, double* res1, double* res2, int n, int i){
double sin_theta, cos_theta;
get_sin_x(n, i, &sin_theta);
get_cos_x(n, i, &cos_theta);
const double qab = q*sin_theta;
const double qc = q*cos_theta;
const double fq = _cyl(core_vd, core_r*qab, core_h*qc) + _cyl(shell_vd, shell_r*qab, shell_h*qc);
*res1 = fq * sin_theta;
*res2 = fq * fq * sin_theta;
}
void integrate_core_shell_cylinder(
const double a,
const double b,
const double q,
const double core_r,
const double core_h,
const double core_vd,
const double shell_r,
const double shell_h,
const double shell_vd,
double* res1,
double* res2
){
const double A = q*core_h;
const double B = q*core_r;
const double C = q*shell_h;
const double D = q*shell_r;
int expo = (int)(eval_poly(log2m(max(limits[0][0],min(limits[0][1], A))), log2m(max(limits[1][0],min(limits[1][1], B))), log2m(max(limits[2][0],min(limits[2][1], C))), log2m(max(limits[3][0],min(limits[3][1], D)))) + 1);
int n = (int)(pow(2, max(1, min(15, expo))));
double *xg, *wg;
get_gauss_points(n, &xg, &wg);
// Perform the integration
*res1 = 0;
*res2 = 0;
for (int i = 0; i < n; i++){
double t1, t2;
integrand_core_shell_cylinder(a + (b - a) * 0.5 * (xg[i] + 1), q, core_r, core_h, core_vd, shell_r, shell_h, shell_vd, &t1, &t2, n, i);
*res1 += t1 * wg[i];
*res2 += t2 * wg[i];
}
*res1 *= (b - a) * 0.5;
*res2 *= (b - a) * 0.5;
}
static void
Fq(double q,
double *F1,
double *F2,
double core_sld,
double shell_sld,
double solvent_sld,
double radius,
double thickness,
double length)
{
// precalculate constants
const double core_r = radius;
const double core_h = 0.5*length;
const double core_vd = form_volume(radius,0,length) * (core_sld-shell_sld);
const double shell_r = (radius + thickness);
const double shell_h = (0.5*length + thickness);
const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld);
double total_F1, total_F2;
integrate_core_shell_cylinder(0, M_PI_2, q, core_r, core_h, core_vd, shell_r, shell_h, shell_vd, &total_F1, &total_F2);
// translate dx in [-1,1] to dx in [lower,upper]
//const double form = (upper-lower)/2.0*total;
*F1 = 1.0e-2 * total_F1 * M_PI_4;
*F2 = 1.0e-4 * total_F2 * M_PI_4;
}
static double
Iqac(double qab, double qc,
double core_sld,
double shell_sld,
double solvent_sld,
double radius,
double thickness,
double length)
{
const double core_r = radius;
const double core_h = 0.5*length;
const double core_vd = form_volume(radius,0,length) * (core_sld-shell_sld);
const double shell_r = (radius + thickness);
const double shell_h = (0.5*length + thickness);
const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld);
const double fq = _cyl(core_vd, core_r*qab, core_h*qc)
+ _cyl(shell_vd, shell_r*qab, shell_h*qc);
return 1.0e-4 * fq * fq;
}
Back to Model
Download