- Categories
- Sphere
- Superball
- superball.c
Superball - superball.c
static double
form_volume(double length_a, double exponent_p)
{
double g1 = sas_gamma(1.0 / (2.0 * exponent_p));
double g3 = sas_gamma(3.0 / (2.0 * exponent_p));
return cube(length_a) / 12.0 / square(exponent_p) * cube(g1) / g3;
}
static double
radius_from_excluded_volume(double length_a, double exponent_p)
{
double g1 = sas_gamma(1.0 / (2.0 * exponent_p));
double g3 = sas_gamma(3.0 / (2.0 * exponent_p));
double g5 = sas_gamma(5.0 / (2.0 * exponent_p));
return length_a * g3 * sqrt(3.0 / 10.0 / g1 / g5);
}
static double
radius_effective(int mode, double length_a, double exponent_p)
{
switch (mode)
{
default:
case 1: // radius of gyration
return radius_from_excluded_volume(length_a, exponent_p);
case 2: // equivalent volume sphere
return cbrt(form_volume(length_a, exponent_p) / M_4PI_3);
case 3: // half length_a
return 0.5 * length_a;
}
}
static double oriented_superball(
double qx,
double qy,
double qz,
double length_a,
double exponent_p)
{
// oriented superball form factor
// outer integral for x
const double radius = length_a / 2.0; // superball radius
const double inverse_2p = 1.0 / (2.0 * exponent_p);
double outer_integral = 0.0; //initialize integral
for (int i_x = 0; i_x < GAUSS_N; i_x++)
{
const double x = 0.5 * (GAUSS_Z[i_x] + 1.0); // integrate 0, 1
const double x2p = pow(x, 2.0 * exponent_p);
const double gamma = pow(1.0 - x2p, inverse_2p);
// inner integral for y
double inner_integral = 0.0; //initialize integral
for (int i_y = 0; i_y < GAUSS_N; i_y++)
{
const double y = 0.5 * gamma * (GAUSS_Z[i_y] + 1.0); // integrate 0, gamma
const double y2p = pow(y, 2.0 * exponent_p);
const double zeta = pow(1.0 - x2p - y2p, inverse_2p);
const double cos1 = cos(radius * qy * y);
const double sinc2 = qz == 0 ? radius * zeta : sin(radius * qz * zeta) / qz;
const double fq = cos1 * sinc2;
inner_integral += GAUSS_W[i_y] * fq;
}
const double co = cos(radius * qx * x);
// integration factor for -1,1 quadrature to 0, gamma: gamma/2
const double integration_factor = 0.5 * gamma;
// Eq. 21 in [Dresen2021]
outer_integral += GAUSS_W[i_x] * integration_factor * inner_integral * co * 2.0 * square(length_a);
}
// Needed to normalise the oriented form factor, but would be reverted later with s = SLD contrast * volume
// outer_integral /= form_volume(length_a, exponent_p);
// integration factor for -1,1 quadrature to 0, 1: 1/2
return 0.5 * outer_integral;
}
static void
Fq(double q,
double *F1,
double *F2,
double sld,
double solvent_sld,
double length_a,
double exponent_p)
{
// translate a point in [-1,1] to a point in [0, pi/2]
const double zm = M_PI_4;
const double zb = M_PI_4;
double orient_averaged_outer_total_F1 = 0.0; //initialize integral
double orient_averaged_outer_total_F2 = 0.0; //initialize integral
// phi integral
for (int i_phi = 0; i_phi < GAUSS_N; i_phi++)
{
const double phi = GAUSS_Z[i_phi]*zm +zb; // integrate 0 .. pi/2
double sin_phi, cos_phi;
SINCOS(phi, sin_phi, cos_phi);
double orient_averaged_inner_total_F1 = 0.0; //initialize integral
double orient_averaged_inner_total_F2 = 0.0; //initialize integral
// theta integral
for (int i_theta = 0; i_theta < GAUSS_N; i_theta++)
{
const double cos_theta = GAUSS_Z[i_theta]*0.5 + 0.5; // integrate 0, 1
const double sin_theta = sqrt( 1.0 - square(cos_theta) );
const double qx = q * cos_phi * sin_theta;
const double qy = q * sin_phi * sin_theta;
const double qz = q * cos_theta;
const double f_oriented = oriented_superball(qx, qy, qz, length_a, exponent_p);
orient_averaged_inner_total_F1 += GAUSS_W[i_theta] * f_oriented;
orient_averaged_inner_total_F2 += GAUSS_W[i_theta] * square(f_oriented);
}
orient_averaged_outer_total_F1 += GAUSS_W[i_phi] * orient_averaged_inner_total_F1;
orient_averaged_outer_total_F2 += GAUSS_W[i_phi] * orient_averaged_inner_total_F2;
}
// integration factors for phi and theta integral, divided by solid angle of pi/2
orient_averaged_outer_total_F1 *= 0.25;
orient_averaged_outer_total_F2 *= 0.25;
// Multiply by contrast^2 and convert from [1e-12 A-1] to [cm-1]
const double s = (sld - solvent_sld) ;
*F1 = 1.0e-2 * s * orient_averaged_outer_total_F1;
*F2 = 1.0e-4 * s * s * orient_averaged_outer_total_F2;
}
static double
Iqabc(double qa, double qb, double qc,
double sld,
double solvent_sld,
double length_a,
double exponent_p)
{
const double f_oriented = oriented_superball(qa, qb, qc, length_a, exponent_p);
const double s = (sld - solvent_sld);
const double form = square(s * f_oriented);
// Square and convert from [1e-12 A-1] to [cm-1]
return 1.0e-4 * form;
}
Back to Model
Download