- Categories
- Parallelepiped
- Parallelepiped
- parallelepiped.c
Parallelepiped - parallelepiped.c
static double
form_volume(double length_a, double length_b, double length_c)
{
return length_a * length_b * length_c;
}
static double
radius_from_excluded_volume(double length_a, double length_b, double length_c)
{
double r_equiv, length;
double lengths[3] = {length_a, length_b, length_c};
double lengthmax = fmax(lengths[0],fmax(lengths[1],lengths[2]));
double length_1 = lengthmax;
double length_2 = lengthmax;
double length_3 = lengthmax;
for(int ilen=0; ilen<3; ilen++) {
if (lengths[ilen] < length_1) {
length_2 = length_1;
length_1 = lengths[ilen];
} else {
if (lengths[ilen] < length_2) {
length_2 = lengths[ilen];
}
}
}
if(length_2-length_1 > length_3-length_2) {
r_equiv = sqrt(length_2*length_3/M_PI);
length = length_1;
} else {
r_equiv = sqrt(length_1*length_2/M_PI);
length = length_3;
}
return 0.5*cbrt(0.75*r_equiv*(2.0*r_equiv*length + (r_equiv + length)*(M_PI*r_equiv + length)));
}
static double
radius_effective(int mode, double length_a, double length_b, double length_c)
{
switch (mode) {
default:
case 1: // equivalent cylinder excluded volume
return radius_from_excluded_volume(length_a,length_b,length_c);
case 2: // equivalent volume sphere
return cbrt(length_a*length_b*length_c/M_4PI_3);
case 3: // half length_a
return 0.5 * length_a;
case 4: // half length_b
return 0.5 * length_b;
case 5: // half length_c
return 0.5 * length_c;
case 6: // equivalent circular cross-section
return sqrt(length_a*length_b/M_PI);
case 7: // half ab diagonal
return 0.5*sqrt(length_a*length_a + length_b*length_b);
case 8: // half diagonal
return 0.5*sqrt(length_a*length_a + length_b*length_b + length_c*length_c);
}
}
static void
Fq(double q,
double *F1,
double *F2,
double sld,
double solvent_sld,
double length_a,
double length_b,
double length_c)
{
const double mu = 0.5 * q * length_b;
// Scale sides by B
const double a_scaled = length_a / length_b;
const double c_scaled = length_c / length_b;
// outer integral (with gauss points), integration limits = 0, 1
double outer_total_F1 = 0.0; //initialize integral
double outer_total_F2 = 0.0; //initialize integral
for( int i=0; i<GAUSS_N; i++) {
const double sigma = 0.5 * ( GAUSS_Z[i] + 1.0 );
const double mu_proj = mu * sqrt(1.0-sigma*sigma);
// inner integral (with gauss points), integration limits = 0, 1
// corresponding to angles from 0 to pi/2.
double inner_total_F1 = 0.0;
double inner_total_F2 = 0.0;
for(int j=0; j<GAUSS_N; j++) {
const double uu = 0.5 * ( GAUSS_Z[j] + 1.0 );
double sin_uu, cos_uu;
SINCOS(M_PI_2*uu, sin_uu, cos_uu);
const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled);
const double si2 = sas_sinx_x(mu_proj * cos_uu);
const double fq = si1 * si2;
inner_total_F1 += GAUSS_W[j] * fq;
inner_total_F2 += GAUSS_W[j] * fq * fq;
}
// now complete change of inner integration variable (1-0)/(1-(-1))= 0.5
inner_total_F1 *= 0.5;
inner_total_F2 *= 0.5;
const double si = sas_sinx_x(mu * c_scaled * sigma);
outer_total_F1 += GAUSS_W[i] * inner_total_F1 * si;
outer_total_F2 += GAUSS_W[i] * inner_total_F2 * si * si;
}
// now complete change of outer integration variable (1-0)/(1-(-1))= 0.5
outer_total_F1 *= 0.5;
outer_total_F2 *= 0.5;
// Multiply by contrast^2 and convert from [1e-12 A-1] to [cm-1]
const double V = form_volume(length_a, length_b, length_c);
const double contrast = (sld-solvent_sld);
const double s = contrast * V;
*F1 = 1.0e-2 * s * outer_total_F1;
*F2 = 1.0e-4 * s * s * outer_total_F2;
}
static double
Iqabc(double qa, double qb, double qc,
double sld,
double solvent_sld,
double length_a,
double length_b,
double length_c)
{
const double siA = sas_sinx_x(0.5*length_a*qa);
const double siB = sas_sinx_x(0.5*length_b*qb);
const double siC = sas_sinx_x(0.5*length_c*qc);
const double V = form_volume(length_a, length_b, length_c);
const double drho = (sld - solvent_sld);
const double form = V * drho * siA * siB * siC;
// Square and convert from [1e-12 A-1] to [cm-1]
return 1.0e-4 * form * form;
}
Back to Model
Download