- Categories
- Cylinder
- Barbell
- barbell.c
Barbell - barbell.c
//barbell kernel - same as dumbbell
static double
_bell_kernel(double qab, double qc, double h, double radius_bell,
double half_length)
{
// translate a point in [-1,1] to a point in [lower,upper]
const double upper = 1.0;
const double lower = -h/radius_bell;
const double zm = 0.5*(upper-lower);
const double zb = 0.5*(upper+lower);
// cos term in integral is:
// cos (q (R t - h + L/2) cos(alpha))
// so turn it into:
// cos (m t + b)
// where:
// m = q R cos(alpha)
// b = q(L/2-h) cos(alpha)
const double m = radius_bell*qc; // cos argument slope
const double b = (half_length+h)*qc; // cos argument intercept
const double qab_r = radius_bell*qab; // Q*R*sin(theta)
double total = 0.0;
for (int i = 0; i < GAUSS_N; i++){
const double t = GAUSS_Z[i]*zm + zb;
const double radical = 1.0 - t*t;
const double bj = sas_2J1x_x(qab_r*sqrt(radical));
const double Fq = cos(m*t + b) * radical * bj;
total += GAUSS_W[i] * Fq;
}
// translate dx in [-1,1] to dx in [lower,upper]
const double integral = total*zm;
const double bell_fq = 2.0*M_PI*cube(radius_bell)*integral;
return bell_fq;
}
static double
_fq(double qab, double qc, double h,
double radius_bell, double radius, double half_length)
{
const double bell_fq = _bell_kernel(qab, qc, h, radius_bell, half_length);
const double bj = sas_2J1x_x(radius*qab);
const double si = sas_sinx_x(half_length*qc);
const double cyl_fq = 2.0*M_PI*radius*radius*half_length*bj*si;
const double Aq = bell_fq + cyl_fq;
return Aq;
}
static double
form_volume(double radius_bell,
double radius,
double length)
{
// bell radius should never be less than radius when this is called
const double h = sqrt(square(radius_bell) - square(radius));
const double slice = M_PI*(square(radius_bell)*h - cube(h)/3.0);
const double hemisphere = 2.0*M_PI/3.0*cube(radius_bell);
const double rod = M_PI*square(radius)*length;
// h > 0 so slice is added to hemisphere
return rod + 2.0*(hemisphere + slice);
}
static double
radius_from_excluded_volume(double radius_bell, double radius, double length)
{
const double h = sqrt(square(radius_bell) - square(radius));
const double length_tot = length + 2.0*(radius + h);
// Use cylinder excluded volume with length' = length + caps and
// radius' = bell radius since the bell is bigger than the cylinder.
return 0.5*cbrt(0.75*radius_bell*(2.0*radius_bell*length_tot
+ (radius_bell + length_tot)*(M_PI*radius_bell + length_tot)));
}
static double
radius_from_volume(double radius_bell, double radius, double length)
{
const double vol_barbell = form_volume(radius_bell,radius,length);
return cbrt(vol_barbell/M_4PI_3);
}
static double
radius_from_totallength(double radius_bell, double radius, double length)
{
const double h = sqrt(square(radius_bell) - square(radius));
const double half_length = 0.5*length;
return half_length + radius_bell + h;
}
static double
radius_effective(int mode, double radius_bell, double radius, double length)
{
switch (mode) {
default:
case 1: // equivalent cylinder excluded volume
return radius_from_excluded_volume(radius_bell, radius , length);
case 2: // equivalent volume sphere
return radius_from_volume(radius_bell, radius , length);
case 3: // radius
return radius;
case 4: // half length
return 0.5*length;
case 5: // half total length
return radius_from_totallength(radius_bell,radius,length);
}
}
static void
Fq(double q,double *F1, double *F2, double sld, double solvent_sld,
double radius_bell, double radius, double length)
{
const double h = sqrt(square(radius_bell) - square(radius));
const double half_length = 0.5*length;
// translate a point in [-1,1] to a point in [0, pi/2]
const double zm = M_PI_4;
const double zb = M_PI_4;
double total_F1 = 0.0;
double total_F2 = 0.0;
for (int i = 0; i < GAUSS_N; i++){
const double theta = GAUSS_Z[i]*zm + zb;
double sin_theta, cos_theta; // slots to hold sincos function output
SINCOS(theta, sin_theta, cos_theta);
const double qab = q*sin_theta;
const double qc = q*cos_theta;
const double Aq = _fq(qab, qc, h, radius_bell, radius, half_length);
// scale by sin_theta for spherical coord integration
total_F1 += GAUSS_W[i] * Aq * sin_theta;
total_F2 += GAUSS_W[i] * Aq * Aq * sin_theta;
}
// translate dx in [-1,1] to dx in [lower,upper]
const double form_avg = total_F1 * zm;
const double form_squared_avg = total_F2 * zm;
//Contrast
const double s = (sld - solvent_sld);
*F1 = 1.0e-2 * s * form_avg;
*F2 = 1.0e-4 * s * s * form_squared_avg;
}
static double
Iqac(double qab, double qc,
double sld, double solvent_sld,
double radius_bell, double radius, double length)
{
const double h = sqrt(square(radius_bell) - square(radius));
const double Aq = _fq(qab, qc, h, radius_bell, radius, 0.5*length);
// Multiply by contrast^2 and convert to cm-1
const double s = (sld - solvent_sld);
return 1.0e-4 * square(s * Aq);
}
Back to Model
Download