- Categories
- Shape-Independent
- Gel Fit
- gel_fit.py
Gel Fit - gel_fit.py
r"""
*This model was implemented by an interested user!*
Unlike a concentrated polymer solution, the fine-scale polymer distribution
in a gel involves at least two characteristic length scales, a shorter
correlation length ($\xi$) to describe the rapid fluctuations in the position
of the polymer chains that ensure thermodynamic equilibrium (based on an
Ornstein-Zernicke, or Lorentz, model), and a longer distance (denoted here
as $R_g$) needed to account for the static accumulations of polymer pinned
down by junction points or clusters of such points (based on a simple
Guinier model). The relative contributions of these two contributions,
$I_L(0)$ and $I_G(0)$, are parameterised as *lorentz_scale* and
*guinier_scale*, respectively.
See also the lorentz model and the gauss_lorentz_gel model.
Definition
----------
The scattered intensity $I(q)$ is calculated as
.. math::
I(Q) \approx \frac{I_L(0)}{\left(1+\left[(D+1)/3\right]Q^2\xi^2
\right)^{D/2}} + I_G(0) \cdot \exp\left( -Q^2R_{g}^2/3\right) + B
Note that the first term reduces to the Ornstein-Zernicke equation
when the fractal dimension $D = 2$; ie, when the Flory exponent is 0.5
(theta conditions). In gels with significant hydrogen bonding $D$ has
been reported to be ~2.6 to 2.8.
References
----------
#. Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han,
*J. Chem. Phys.* 1992, 97 (9), 6829-6841. DOI: 10.1063/1.463637
#. Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie,
Erik Geissler, *Macromolecules* 1991, 24, 543-548. DOI: 10.1021/MA00002A031
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:** Steve King **Date:** November 22, 2022
* **Last Reviewed by:** Paul Kienzle **Date:** November 21, 2022
"""
import numpy as np
from numpy import inf
name = "gel_fit"
title = "Fitting using fine-scale polymer distribution in a gel."
description = """\
Shibayama-Geissler Two-Length Scale Fit for Gels (GelFit)
Shibayama; Tanaka; Han J Chem Phys (1992), 97(9), 6829-6841
Mallam; Horkay; Hecht; Rennie; Geissler, Macromol (1991), 24, 543
"""
category = "shape-independent"
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type","description"],
parameters = [["guinier_scale", "cm^-1", 1.7, [-inf, inf], "", "Guinier term scale"],
["lorentz_scale", "cm^-1", 3.5, [-inf, inf], "", "Lorentz term scale"],
["rg", "Ang", 104.0, [2, inf], "", "Radius of gyration"],
["fractal_dim", "", 2.0, [0, inf], "", "Fractal exponent"],
["cor_length", "Ang", 16.0, [0, inf], "", "Correlation length"]
]
# pylint: enable=bad-whitespace, line-too-long
source = ["gel_fit.c"]
def random():
"""Return a random parameter set for the model."""
guinier_scale = 10**np.random.uniform(1, 3)
lorentz_scale = 10**np.random.uniform(1, 3)
rg = 10**np.random.uniform(1, 5)
fractal_dim = np.random.uniform(0, 6)
cor_length = 10**np.random.uniform(0, 3)
pars = dict(
#background=0,
scale=1,
guinier_scale=guinier_scale,
lorentz_scale=lorentz_scale,
rg=rg,
fractal_dim=fractal_dim,
cor_length=cor_length
)
return pars
tests = [[{'guinier_scale': 1.0,
'lorentz_scale': 1.0,
'rg': 10.0,
'fractal_dim': 10.0,
'cor_length': 20.0,
'background': 0.0,
}, 0.1, 0.716532],
[{'guinier_scale': 4.0,
'lorentz_scale': 10.0,
'rg': 500.0,
'fractal_dim': 1.0,
'cor_length': 20.0,
'background': 20.0,
}, 5.0, 20.1224653026],
]
Back to Model
Download