- Categories
- Shape-Independent
- Spinodal
- spinodal.py
Spinodal - spinodal.py
r"""
Definition
----------
This model calculates the SAS signal of a phase separating system undergoing
spinodal decomposition. The scattering intensity $I(q)$ is calculated as
.. math::
I(q) = I_{max}\frac{(1+\gamma/2)x^2}{\gamma/2+x^{2+\gamma}}+B
where $x=q/q_0$, $q_0$ is the peak position, $I_{max}$ is the intensity
at $q_0$ (parameterised as the $scale$ parameter), and $B$ is a flat
background. The spinodal wavelength, $\Lambda$, is given by $2\pi/q_0$.
The definition of $I_{max}$ in the literature varies. Hashimoto *et al* (1991)
define it as
.. math::
I_{max} = \Lambda^3\Delta\rho^2
whereas Meier & Strobl (1987) give
.. math::
I_{max} = V_z\Delta\rho^2
where $V_z$ is the volume per monomer unit.
The exponent $\gamma$ is equal to $d+1$ for off-critical concentration
mixtures (smooth interfaces) and $2d$ for critical concentration mixtures
(entangled interfaces), where $d$ is the dimensionality (ie, 1, 2, 3) of the
system. Thus 2 <= $\gamma$ <= 6. A transition from $\gamma=d+1$ to $\gamma=2d$
is expected near the percolation threshold.
As this function tends to zero as $q$ tends to zero, in practice it may be
necessary to combine it with another function describing the low-angle
scattering, or to simply omit the low-angle scattering from the fit.
References
----------
#. H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures:
Growth rates of droplets and scaling properties of autocorrelation functions.
*Physica A* 123, 497 (1984).
#. H. Meier & G. Strobl. Small-Angle X-ray Scattering Study of Spinodal
Decomposition in Polystyrene/Poly(styrene-co-bromostyrene) Blends.
*Macromolecules* 20, 649-654 (1987).
#. T. Hashimoto, M. Takenaka & H. Jinnai. Scattering Studies of Self-Assembling
Processes of Polymer Blends in Spinodal Decomposition.
*J. Appl. Cryst.* 24, 457-466 (1991).
Authorship and Verification
----------------------------
* **Author:** Dirk Honecker **Date:** Oct 7, 2016
* **Last Modified by:** Steve King **Date:** Oct 25, 2018
* **Last Reviewed by:** Steve King **Date:** Oct 25, 2018
"""
import numpy as np
from numpy import inf, errstate
name = "spinodal"
title = "Spinodal decomposition model"
description = """\
I(q) = Imax ((1+gamma/2)x^2)/(gamma/2+x^(2+gamma)) + background
List of default parameters:
Imax = correlation peak intensity at q_0
background = incoherent background
gamma = exponent (see model documentation)
q_0 = correlation peak position [1/A]
x = q/q_0"""
category = "shape-independent"
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type", "description"],
parameters = [["gamma", "", 3.0, [-inf, inf], "", "Exponent"],
["q_0", "1/Ang", 0.1, [-inf, inf], "", "Correlation peak position"]
]
# pylint: enable=bad-whitespace, line-too-long
def Iq(q,
gamma=3.0,
q_0=0.1):
"""
:param q: Input q-value
:param gamma: Exponent
:param q_0: Correlation peak position
:return: Calculated intensity
"""
with errstate(divide='ignore'):
x = q/q_0
inten = ((1 + gamma / 2) * x ** 2) / (gamma / 2 + x ** (2 + gamma))
return inten
Iq.vectorized = True # Iq accepts an array of q values
def random():
"""Return a random parameter set for the model."""
pars = dict(
scale=10**np.random.uniform(1, 3),
gamma=np.random.uniform(0, 6),
q_0=10**np.random.uniform(-3, -1),
)
return pars
Back to Model
Download