Hardsphere - hardsphere.c

    double Iq(double q, double radius_effective, double volfraction)
{
      double D,A,B,G,X,X2,X4,S,C,FF,HARDSPH;
      // these are c compiler instructions, can also put normal code inside the "if else" structure
      #if FLOAT_SIZE > 4
      // double precision
      // orig had 0.2, don't call the variable cutoff as PAK already has one called that!
      // Must use UPPERCASE name please.
      // 0.05 better, 0.1 OK
      #define CUTOFFHS 0.05
      #else
      // 0.1 bad, 0.2 OK, 0.3 good, 0.4 better, 0.8 no good
      #define CUTOFFHS 0.4
      #endif

      if(fabs(radius_effective) < 1.E-12) {
               HARDSPH=1.0;
//printf("HS1 %g: %g\n",q,HARDSPH);
               return(HARDSPH);
      }
      // removing use of pow(xxx,2) and rearranging the calcs
      // of A, B & G cut ~40% off execution time ( 0.5 to 0.3 msec)
      X = 1.0/( 1.0 -volfraction);
      D= X*X;
      A= (1.+2.*volfraction)*D;
      A *=A;
      X=fabs(q*radius_effective*2.0);

      if(X < 5.E-06) {
                 HARDSPH=1./A;
//printf("HS2 %g: %g\n",q,HARDSPH);
                 return(HARDSPH);
      }
      X2 =X*X;
      B = (1.0 +0.5*volfraction)*D;
      B *= B;
      B *= -6.*volfraction;
      G=0.5*volfraction*A;

      if(X < CUTOFFHS) {
      // RKH Feb 2016, use Taylor series expansion for small X
      // else no obvious way to rearrange the equations to avoid
      // needing a very high number of significant figures.
      // Series expansion found using Mathematica software. Numerical test
      // in .xls showed terms to X^2 are sufficient
      // for 5 or 6 significant figures, but I put the X^4 one in anyway
            //FF = 8*A +6*B + 4*G - (0.8*A +2.0*B/3.0 +0.5*G)*X2 +(A/35. +B/40. +G/50.)*X4;
            // refactoring the polynomial makes it very slightly faster (0.5 not 0.6 msec)
            //FF = 8*A +6*B + 4*G + ( -0.8*A -2.0*B/3.0 -0.5*G +(A/35. +B/40. +G/50.)*X2)*X2;

            FF = 8.0*A +6.0*B + 4.0*G + ( -0.8*A -B/1.5 -0.5*G +(A/35. +0.0125*B +0.02*G)*X2)*X2;

            // combining the terms makes things worse at smallest Q in single precision
            //FF = (8-0.8*X2)*A +(3.0-X2/3.)*2*B + (4+0.5*X2)*G +(A/35. +B/40. +G/50.)*X4;
            // note that G = -volfraction*A/2, combining this makes no further difference at smallest Q
            //FF = (8 +2.*volfraction + ( volfraction/4. -0.8 +(volfraction/100. -1./35.)*X2 )*X2 )*A  + (3.0 -X2/3. +X4/40.)*2.*B;
            HARDSPH= 1./(1. + volfraction*FF );
//printf("HS3 %g: %g\n",q,HARDSPH);
            return(HARDSPH);
      }
      X4=X2*X2;
      SINCOS(X,S,C);

// RKH Feb 2016, use version FISH code as is better than original sasview one
// at small Q in single precision, and more than twice as fast in double.
      //FF=A*(S-X*C)/X + B*(2.*X*S -(X2-2.)*C -2.)/X2 + G*( (4.*X2*X -24.*X)*S -(X4 -12.*X2 +24.)*C +24. )/X4;
      // refactoring the polynomial here & above makes it slightly faster

      FF=  (( G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )/X2 + B*(2.*X*S -(X2-2.)*C -2.) )/X + A*(S-X*C))/X ;
      HARDSPH= 1./(1. + 24.*volfraction*FF/X2 );

      // changing /X and /X2 to *MX1 and *MX2, no significantg difference?
      //MX=1.0/X;
      //MX2=MX*MX;
      //FF=  (( G*( (4.*X2 -24.)*X*S -(X4 -12.*X2 +24.)*C +24. )*MX2 + B*(2.*X*S -(X2-2.)*C -2.) )*MX + A*(S-X*C)) ;
      //HARDSPH= 1./(1. + 24.*volfraction*FF*MX2*MX );

// grouping the terms, was about same as sasmodels for single precision issues
//     FF=A*(S/X-C) + B*(2.*S/X - C +2.0*(C-1.0)/X2) + G*( (4./X -24./X3)*S -(1.0 -12./X2 +24./X4)*C +24./X4 );
//     HARDSPH= 1./(1. + 24.*volfraction*FF/X2 );
// remove 1/X2 from final line, take more powers of X inside the brackets, stil bad
//      FF=A*(S/X3-C/X2) + B*(2.*S/X3 - C/X2 +2.0*(C-1.0)/X4) + G*( (4./X -24./X3)*S -(1.0 -12./X2 +24./X4)*C +24./X4 )/X2;
//      HARDSPH= 1./(1. + 24.*volfraction*FF );
//printf("HS4 %g: %g\n",q,HARDSPH);
      return(HARDSPH);
}
Back to Model Download